
REVISTA ODIGOS
QUITO-ECUADOR
2024
66
REVISTA ODIGOS • VOL.5 NUM. 2 • JUNIO - SEPTIEMBRE 2024
Habib, S., Vogelb, T., Anli, X., y Thorne, E. (2024). How does generative articial intelligence impact student
creativity? Journal of Creativity, 34(1). https://doi.org/10.1016/j.yjoc.2023.100072
Hünicken, L., González, A., Haag, M., Villafañe, y Ruppel, D. (2021). Gamicación y Aprendizaje Adaptativo en
la enseñanza de la asignatura Algoritmos y Estructuras de Datos. Electronic Journal of SADIO, 20 (2),
98–114. http://sedici.unlp.edu.ar/handle/10915/135599
Ingavélez, P., Robles, V., Pérez, A., Hilera, J., y Oton, S. (2022). Automatic Adaptation of Open Educational
Resources: An Approach From a Multilevel Methodology Based on Students’ Preferences, Educational
Special Needs, Articial Intelligence and Accessibility Metadata. IEEE Access, 10, 9703–9716. https://doi.
org/10.1109/ACCESS.2021.3139537
Joshi, S., Rambola, R., y Churi, P. (2021). Evaluating articial intelligence in education for next generation. Jour-
nal of Physics: Conference Series, 1714. https://doi.org/10.1088/1742-6596/1714/1/012039
Kabudi, T., Pappas, I., y Olsen, D. (2021). AI-enabled adaptive learning systems: A systematic mapping of the
literature. Computers and Education: Articial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100017
Kumar, A., Krishnamurthi, R., Bhatia, S., Kaushik, K., Ahuja, N., Nayyar, A., y Masud, M. (2021). Blended Learning
Tools and Practices: A Comprehensive Analysis. IEEE Access, 9, 85151–85197. https://doi.org/10.1109/
ACCESS.2021.3085844
Liang, J., Hare, R., Chang, T., Xu, F., Tang, Y., Wang, F., Peng, S., y Lei, M. (2022). Student Modeling and
Analysis in Adaptive Instructional Systems. IEEE Access, 10, 59359–59372. https://doi.org/10.1109/AC-
CESS.2022.3178744
Lorenzo, N., Gallon, R., Palau, R., y Mogas, J. (2021). New Objectives for Smart Classrooms from Industry 4.0.
Technology, Knowledge and Learning, 26, 719–731. https://doi.org/10.1007/s10758-021-09527-0
Ly, B., Ly, R., y Hor, S. (2023). Zoom classrooms and adoption behavior among Cambodian students. Computers
in Human Behavior Reports, 9. https://doi.org/10.1016/j.chbr.2022.100266
Macpherson, T., Churchland, A., Sejnowski, T., DiCarlo, J., Kamitani, Y., Takahashi, H., y Hikida, T. (2021). Na-
tural and Articial Intelligence: A brief introduction to the interplay between AI and neuroscience research.
Neural Networks, 144, 603–613. https://doi.org/10.1016/j.neunet.2021.09.018
Martínez, M., Rigueira, X., Larrañaga, A., Martínez, J., Ocarranza, I., y Kreibel, D. (2023). Impact of articial
intelligence on assessment methods in primary and secondary education: Systematic literature review.
Revista de Psicodidáctica, 28(2), 93–103. https://doi.org/10.1016/j.psicoe.2023.06.002
Mills, N. (2021). ALEKS constructs as predictors of high school mathematics achievement for struggling stu-
dents. Heliyon, 7(6). https://doi.org/10.1016/j.heliyon.2021.e07345