
REVISTA ODIGOS
QUITO-ECUADOR
2025
98
REVISTA ODIGOS • VOL.6 NUM. 1 • FEBRERO - MAYO • 2025
Referencias
Anwar, K., Siddiqui, J., y Saquib, S. (2020). Machine learning-based book recommender system: a survey and
new perspectives. International Journal of Intelligent Information and Database Systems, 13(2-4), 231-248.
https://doi.org/10.1504/IJIIDS.2020.109457
Arena, S., Florian, E., Sgarbossa, F., Sølvsberg, E., y Zennaro, I. (2024). A conceptual framework for machine lear-
ning algorithm selection for predictive maintenance. Engineering Applications of Articial Intelligence, 133.
https://doi.org/10.1016/j.engappai.2024.108340
García, M., Rodríguez, V., Ballesteros, P., Love, P., y Signor, R. (2022). Collusion detection in public procurement
auctions with machine learning algorithms. Automation in Construction, 133. https://doi.org/10.1016/j.
autcon.2021.104047
Gohel, P., Singh, P., y Mohanty, M. (2021). Explainable AI: current status and future directions. Arxiv. https://doi.
org/10.48550/arXiv.2107.07045
Guida, M., Caniato, F., Moretto, A., y Ronchi, S. (2023). The role of articial intelligence in the procurement pro-
cess: State of the art and research agenda. Journal of Purchasing and Supply Management, 29(2). https://
doi.org/10.1016/j.pursup.2023.100823
Love, P., Fang, W., Matthews, J., Porter, S., Luo, H., y Ding, L. (2023). Explainable articial intelligence (XAI):
Precepts, models, and opportunities for research in construction. Advanced Engineering Informatics, 57.
https://doi.org/10.1016/j.aei.2023.102024
Molina, M., Acaro, X., Molina, M., Quinoñez, M., Alvarez, G., y Fernandez, J. (2023). Application of explainable
articial intelligence to analyze basic features of a tender. Actas de International Conference on Electrical,
Computer, Communications and Mechatronics Engineering, ICECCME 2023 (pp. 1-6). España. 10.1109/
ICECCME57830.2023.10253063
Nai, R., Meo, R., Morina, G., y Pasteris, P. (2023). Public tenders, complaints, machine learning and recommen-
der systems: a case study in public administration. Computer Law & Security Review, 51. https://doi.or-
g/10.1016/j.clsr.2023.105887
Oussaleh, A. y Azmani, A. (2023). Smart Sourcing Framework for Public Procurement Announcements Using
Machine Learning Models. International Conference on Advanced Intelligent Systems for Sustainable Deve-
lopment, 637, 921-932. https://doi.org/10.1007/978-3-031-26384-2_83
Pita, C. (2021). Proyecto de Sistema de Recomendación de Filtrado Colaborativo basado en Machine Learning.
Revista PGI(8), 48-51. https://ojs.umsa.bo/ojs/index.php/inf_fcpn_pgi/article/view/46