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ABSTRACT

The chaos game is a random algorithm generally applied to contracting (hyperbolic) iterated function 
system (IFS) which makes it possible to obtain the unique attractor of the dynamic system. However, 
when applied to non-contractive IFS extremely interesting results can be obtained that are not only 
important from a theoretical and application point of view, but can also be part of a mathematical di-
dactics that seeks to modernize teaching. In this sense, this research present some results related to 
the application of the chaos game to non-contracting IFS are presented. 

PALABRAS CLAVE: Chaos game, dynamic systems, iterated function system.

RESUMEN

El juego del caos es un algoritmo aleatorio generalmente aplicado a sistemas de funciones iteradas 
(IFS) contractivas (hiperbólicas), lo que hace posible obtener un único atractor del sistema dinámico. 
Sin embargo, cuando se aplica a IFS no contractivos se pueden obtener resultados extremadamente 
interesantes que no solo son importantes desde el punto de vista teórico y de aplicación, sino que 
puede ser parte de la didáctica matemática que busque modernizar la enseñanza. En este sentido, 
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esta investigación presenta algunos resultados relacionados con la aplicación del juego del caos a 
los IFS no contractuales.

KEYWORDS: Juego del caos, sistemas dinámicos, sistema de funciones iteradas 
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Introduction
The chaos game is an algorithm that serves to create fractal figures (M. Barnsley, 1988, 
2004, 2006; M. Barnsley & Vince, 2011). Traditionally it has been visualized for contractive or 
contractive on average iterative function systems (IFS), such that the theorem of the contractive 
mapping guarantees the existence of a single attractor (M. Barnsley, 2006; Peitgen, Jürgens, & 
Saupe, 2004), one of the best-known cases is the Sierpinski triangle. A great contribution to the 
generalization of the chaos game to non-contractive IFS was proposed by Barnsley and Vince 
(2011) where it is exposed how the chaos game can be used to obtain the attractor of general IFS 
if the system has a single attractor. However, in the works that this document is aware of, no varied 
literature has been found related to the visualization of the chaos game corresponding to non-
contractive IFS, both in cases where a single attractor is obtained and in which no.

Although theoretical progress has been made in the cases of non-hyperbolic IFS (M. Barnsley & 
Vince, 2011; Díaz & Matias, 2018; La Torre & Mendivil, 2013) this paper do not seek to present 
theoretical aspects that contribute to the works of these authors and theory in general, but it is 
sought to show the figures that result from applying the chaos game, with special emphasis on how 
functions and linear transformations associated with a non-hyperbolic IFS can create beautiful and 
complex but not necessarily fractal figures.

The visualization is significant particularly in math teaching didactics, as it is important to establish 
relations of what is being looking at and what it stated in a formal symbolic way (Gatica & Ares, 
2012). Even though, this investigation is not approached from an education point of view but from 
a general way that seeks to encourage the interested in topics that are non-typical in today math 
curriculum. 

1. Hyperbolic IFS

First let’s consider some fundamental definitions that are necessary to understand the difference 
between a contractive and a non-contractive IFS.

Definition 1. An iterated function system or IFS consists of a finite sequence of transformations 
 for  where  is an integer and  is a complete metric space. An IFS is 

usually denoted by  .

An IFS with probabilities consist of and IFS and a sequence of probabilities  positive 
real numbers such that , thus each function is associated with a probability.

Definition 2. A transformation  in a metric space  is called contractive if the scale 
factor s  is less than one and equal or greater than zero, thus the distance associate to the metric 
space is given by equation 1.
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Definition 3. Let  a complete metric space. Let  be a finite sequence of strictly 
contractive transformations . Then  is called a strictly 
contractive IFS or a hyperbolic IFS.

Theorem 1. Let  be a contractive application in a metric space . Then has exactly 
one single fixed point  and also for any point  the sequence  converges to 

. This can be expressed by equation 2.

 

A full proof of theorem 1 is detailed in Barnsley (1995). Many visualizations of chaos game 
according to eq. 2 can be reviewed in literature (Devaney, 2018; Fabre, 2011; Garrison, 2016; 
Huisman, 2017; Piretzidis, 2020; Wang-Hoyer, 2020). However, this work shows what happen when 
the conditions of this theorem are not fulfilled. Therefore, the difference is reduced to the scaling 
factor such that s  is greater than one, thus obtaining a non-hyperbolic IFS. This change that seems 
insignificant makes a big difference in the behaviour of the dynamic system.

Methodology
Be a set of points called from now vertices located in a circle of radius one and be any point iP  the 
chaos game considered in this article is to move in the direction of any vertex (selected with a p
probability that for simplicity is equal for each vertex) according to a scaling factor s  in such a way 
to obtain a new point 1iP+ , this is held theoretically infinite times; although is constrain to around 710  
iterations due to hardware restriction.

So, all the results shown were obtained by applying equation 3 following the proposed 
methodology. For this a programming in MATLAB was used.

Where

1ix +  and 1iy +  are the coordinates of the iteration 1i + ;

ix  and iy  are the coordinates of the iteration i ;

k  is a factor such that  this is a generalization of a hyperbolic IFS where ;

v nx = and v ny = are the coordinates of the n  vertex randomly selected;

T  is a rotation transformation.

Equation 3 can be modified and different results will be obtained, it is possible to add not only 
rotations, but also translations, reflections and shears, that is, different transformations. This means 
that the results shown below apply to all these cases in general.

PABLO JOSÉ MAVARES
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Results
Although the dynamic system studied is not contractive, the points obtained from the iterations can 
be delimited to a closed set or can quickly tend to infinity, thus having or not a unique attractor. 
Hence, an interesting question to ask is the following: ¿from which scaling factor value does the 
system quickly tend to infinity? To answer this question from a geometric point of view consider 
figure 1 (i) where any two vertices ( 1v and 2v ) are shown at a distance  between them, in addition 
there is a distance d  to any point . The general idea is to find a scaling factor such that the 
maximum distance between the point of the next iteration 1iP+   and any vertex is less than or equal 
to the maximum distance (Euclidean) between the point iP   and the vertices, this guarantees that 
successive iterations are within a closed set of points. This can be written in an inequality form (4).

  

Where

s  is the scaling factor such that 1s
k

= ;

 maximum distance between any two vertices;

d  maximum distance between point  and vertices;

By rearranging 4, we get and inequality in terms of s  (5).

 
 
and 0s >  

The graph of this inequality with  is shown in Figure 1 (ii), a simple intuitive interpretation of 
this result can be explained as follows: since the scaling factor s  is assumed constant, for small 
values   of d  the distance between the points of the iterations and the vertices will increase but the 
increase will be contained in the limit to infinity of the iterations if the scaling factor is less than 2, 
otherwise the points will go away more and more from the vertices and quickly diverge to infinity 
(recalling that this is an iterative process).

VISUALIZATION OF THE CHAOS GAME FOR NON-HYPERBOLIC ITERATED FUNCTION SYSTEM
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Figure 1. (i) An iteration considering the case studied (ii) Graph of inequality 5.
Source: P. J. Mavares, 2020

The previous result is very simple; it enhances the understanding of chaotic dynamical system, 
particularly the chaos game. Although this work does not intend to discuss in deep about the 
contributions of the chaos game to math education, obtaining and interpreting inequality 5  from 
the proposed question can be a small challenge to students since it could improve the reasoning of 
application of inequalities beyond just the resolution of structured exercises. To visualize the above, 
consider Figure 2 which shows the case for a scaling factor of 1.25, thus 1s >  and the functions are 
non-contractive; however it is noted that successive iterations converge, including a fractal figure 
even in a non-hyperbolic IFS. On the other hand, Figure 3 shows the behavior of the system for the 
singular case . In this case the system generates a set with a strong symmetry that grows as the 
iterations increase, that is, it does not converge to a single attractor.

Henceforth the starting point is considered as .

(i) (ii) (iii)
Figure 2. Chaos game with 5 4s =  and a 45°  rotation. (i) 410  iterations (ii) 610  iterations (iii)  iterations. Vertices are 

shown as red points.
Source: P. J. Mavares, 2020

PABLO JOSÉ MAVARES
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(i) (ii) (iii)

(iv) (v) (vi)
Figure 3. Chaos game with 2s =  and a 45°  rotation and 3 vertices. (i)  iterations. (ii) 310  iterations. (iii) 410  iterations. 

(iv) 510  iterations. (v) 610  iterations. (vi) 710  iterations.
Source: P. J. Mavares, 2020

Therefore, a small change in the scaling factor ds  such that 2s ds+ >  will cause the points to move 
away from the vertices very quickly, this can see in Figure 4 (ii). In addition, it is remarkable that 
when  the vertices can be approximated to a single point, so the points of each iteration will 
lie on an approximated straight line (it is important to mention that visually it gives the impression of 
being a continuous line, but the behavior is discrete). It is clear that linear transformations applied 
affect the resulting set, in Figure 4 an example is presented with a rotation of 45° , and since 
360 45 8° ° = , eight uniformly separated sets of points arranged in a straight line will be obtained 
around the origin (since the vertices are fixed around it).

VISUALIZATION OF THE CHAOS GAME FOR NON-HYPERBOLIC ITERATED FUNCTION SYSTEM
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(i) (ii)
Figure 4. (i) 710  iterations with 10 vertices, 2s =  and a 45°  rotation. (ii) 710  iterations with 10 vertices, 2.0000004s =  and a 

45°  rotation. It is clearly noticeable that a small change ds  drastically affects the  
dynamic system.

Source: P. J. Mavares, 2020

An interesting result is the in which there is a small rotation angle 1q < ° , this will create a large 
number of points around the origin, which seems to generate a curve around (however the set of 
points is finite) resulting similar to a logarithmic spiral; therefore, in polar coordinates when  
the dynamic system can be expressed by equation 6.

  

Where:

ir  is the radius and  is the angle of point iP  in polar coordinates;

1ir+  is the radius  of point 1iP+  in polar coordinates;

s  is the scaling factor;

 is the rotation angle;

Figure 5 presents a comparison between the result obtained from the chaos game and the result 
obtained from equation 6, the form and behavior are similar, the differences are that equation 6 only 
applies to .

PABLO JOSÉ MAVARES
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(i) (ii)
Figure 5. (i) shows the result after applying 610  iterations, with 10 vertices, a scaling factor of 1/ 0.4999s = and a rotation angle 

. In (ii) the result is shown after applying 610 iterations using the equation 6.
Source: P. J. Mavares, 2020

Unlike a hyperbolic IFS where it is guaranteed to have a single attractor regardless of the sequence 
of vertices selected for the iterations, Figure 6 evidence that for a scaling factor equal to two the set 
of points does depend on the order of selection of vertices (in each case created randomly thanks 
to MATLAB’s rand function). In all cases, although the figures are not fractal, they are extremely 
beautiful, so it is again evident that chaotic dynamic systems can create extremely complex figures 
from very simple functions that without going into details of theoretical aspects and of applications, 
by themselves they seem created by an artist.

VISUALIZATION OF THE CHAOS GAME FOR NON-HYPERBOLIC ITERATED FUNCTION SYSTEM
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Figure 6. 610  iterations with a rotation angle of 60°  and four vertices with different sequence of vertices selection.
Source: P. J. Mavares, 2020

Like the case of a hyperbolic IFS, the points generate a figure that depends on the number of 
vertices as shown in Figure 7 (when the scaling factor is equal to two). Of course, in this the figures 
are not fractal, changing the transformations it is possible to have infinite different sets of points.

PABLO JOSÉ MAVARES
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3n = 4n = 5n =

6n = 7n = n ® �

Figure 7. 610  iterations with 2s =  and a rotation of 80°  with different number n  of vertices.
Source: P. J. Mavares, 2020

Conclusions
The chaos game has traditionally been used to obtain fractal figures in hyperbolic IFS. Despite 
this, its use for non-contracting systems is equally interesting, being able to generate figures with 
high beauty and symmetry. The visualization of the chaos game for non-hyperbolic IFS can be as 
striking as the presentation of the best-known fractal figures, which can generate interest on the 
part of the students in seeking to understand the theoretical foundations behind these dynamic 
systems, particularly it was visible that a small change in the scaling factor generates an abrupt 
change in the behavior of the dynamic system, therefore this serves as an intuition of what chaos 
is.

Dynamic systems have been interesting in recent years because they have hidden interesting 
patterns related to various aspects including mathematics, medicine, biology and nature in general. 
That is why it is recommended to investigate even more in non-hyperbolic systems, since they can 
still hide patterns to be found.

VISUALIZATION OF THE CHAOS GAME FOR NON-HYPERBOLIC ITERATED FUNCTION SYSTEM
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