Ali, M. E., Hassan, M. Z., Ali, M. S., & Kumar, J. (2017). Prediction of Wind Speed
Using Real Data: An Analysis of Statistical Machine Learning Techniques . Asia-
Pasific World Congr. Comput. Sci. Eng. (APWC CSE), 259-264.
Bayram, K., Murat, D., Tahir, G. M., & Ziyaddim, R. (2018). ESTIMATING WIND
ENERGY POTENTIAL WITH PREDICTING BURR LSM PARAMETERS: A
DIFFERENT APPROACH. Journal of Engineering & Natural Sciences , 389-
404.
Bektas, Z., Kücükdeniz , T., & Özcan, T. (2017). A Comparison of Support Vector
Regression and Multivariable Grey Model for Short-Term Wind Speed
Forecasting. Turkish Journal of Forecasting,, 46-53.
Borovsky, J. E. (2019). Compacting the description of a time-dependent multivariable
system and its multivariable driver by reducing the state vectors to aggregate
scalars: the Earth's solar-wind-driven magnetosphere. . Nonlinear Processes in
Geophysics, 429-443.
Chen, C., & Pang, Y. (2019). Exploring Machine Learning Techniques for Smart
Drainage System. 2019 IEEE Fifth International Conference on Big Data
Computing Service and Applications (BigDataService), 63-70.
Chen, J., Zeng, G.-Q., Zhou, W., Du, W., & Lu, K.-D. (2018). Wind speed forecasting
using nonlinear-learning ensemble of deep learning time series prediction and
extremal optimization. Energy Conversion and Management, 681-695.
Cortes - Pérez, D. M., Sierra-Vargas, F. E., & Arango - Gómez, J. E. (2016). Evaluación,
predicción y modelación del potencial eólico Assessment forescasting and
modelling of wind Potencial. Ingeniería Mecánica, 167-175.
Feng , C., Cui, M., Hodge, B.-M., & Zhang, J. (2017). A data-driven multi-model
methodology with deep feature selection for short-term wind forecasting. Applied
Energy, 1245-1257.
Fischer, A., Montuelle, M., Mougeot, M., & Picard, D. (2017). Statistical learning for
wind power: A modelling and stability study towards forecasting. Wind Energy,
20(12), 2037-2047.
Goh, H. H., Lee, S. W., Chua, Q. S., Goh, K. C., & Teo, K. K. (2016). Wind energy
assessment considering wind speed correlation in Malaysia. Renewable and
Sustainable Energy Reviews, 1389-1400.
Lawan, S. M., Abidin, W. A., Lawan, A. M., Bichi, S. L., & Abba, I. (2017). The potential
of topographical feedforward neural network (T-FFNN) technique in monthly
wind speed and direction prediction. Informatics Sustain Soc. Through Digit
Innov. ICEEI, 1-6.
Medina, N., & Juan, R. (3 de Diciembre de 2012). Predicción con incertidumbre en
meterolog{ia energética. Aplicación en predicción eólica. Gran Canaria: ULPGC
Universidad las Palmas de Gran Canaria.
https://accedacris.ulpgc.es/bitstream/10553/9120/6/tfm_rnebot.pdf
Mercado, F. R., García Fernández, W., & Acebey, J. H. (2016). Sistema de inteligencia
artificial para la predicción temprana de heladas meteorológicas. Artifitial
intelligence system for early prediction of weather frost, 483-495.
Narayana, M. S. (2017). Adaptive linear prediction for optimal control of wind turbines.
Renewable Energy , 895-906.
Optis, M., & Perr-Sauer, J. (2019). The importance of atmospheric turbulence and
stability in machine-learning models of wind farm power production. Renewable
and Sustainable Energy Reviews, 27-41.