
REVISTA
ODIGOS rodigos@uisrael.edu.ec

• e-ISSN: 2697-3405

REVISTA ODIGOS
QUITO-ECUADOR
2022 9

Per íodo febrero - mayo 2022
Vol. 3, Núm. 1

Android service to interface mosquitto messaging broker
(MQTT)

Fecha de recepción: 2021-12-26 • Fecha de aceptación: 2022-01-05 • Fecha de publicación: 2022-02-10

Cristian Mauricio Gallardo Paredes1

Universidad Politécnica de Tomsk, Rusia
kristianmaurisio1@tpu.ru

https://orcid.org/0000-0002-5361-9144

Patricia del Rocío Rodríguez Fiallos2

Ministerio de Educación Distrito 18D02, Ecuador
patriciad.rodriguez@educacion.gob.ec
https://orcid.org/0000-0002-5213-1008

Francisco Javier Galora Silva3

Universidad Internacional de la Rioja, Ecuador
francisco.galora049@comunidadunir.net

https://orcid.org/0000-0002-5464-5336

ABSTRACT

Real-time messages are used at a high level by different computer applications, there are different
servers, protocols, etc. that can be used and are available on the Internet, however, these are
created in such a way that the consumption of computational resources is very high and would only
be optimal if we use a server with great features. This research work aims to develop a service on
Android service to interface mosquitto messaging broker (MQTT) and provide a suitable mechanism
to receive requests from an Android application at the same time also notify that some data has
arrived, data are stored in the SQLite manager, which uses few computational resources and is
suitable for small applications, which are testing protocols and messaging servers. The experimental
results show that the service meets the initial objectives of the work, allowing to create of a
messaging system based on publishers and subscribers for the Android platform.

https://doi.org/10.35290/ro.v3n1.2022.539

https://orcid.org/0000-0002-5361-9144
https://orcid.org/0000-0002-5213-1008
https://orcid.org/0000-0002-5464-5336
https://doi.org/10.35290/ro.v3n1.2022.539

REVISTA ODIGOS
QUITO-ECUADOR
202210

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

KEYWORDS: service, android, Mosquito, MQTT

RESUMEN

Los mensajes en tiempo real son utilizados en un alto nivel por diferentes aplicaciones informáticas,
existen diferentes servidores, protocolos, etc., que se pueden utilizar y están disponibles en Internet;
sin embargo, estos están creados de tal manera que el consumo de recursos computacionales es
muy elevado y solo sería óptimo si se utiliza un servidor con grandes prestaciones. Este trabajo de
investigación tiene como objetivo desarrollar un servicio sobre Android, que sirva de interfaz con
el broker de mensajería Mosquitto (MQTT) que proporcione un mecanismo adecuado para recibir
peticiones de una aplicación Android y al mismo tiempo también notifique que han llegado unos
datos, mismo que se almacenan en el gestor SQLITE, que utiliza pocos recursos computacionales
y es adecuado para pequeñas aplicaciones, que están probando protocolos y servidores de
mensajería. Los resultados experimentales muestran que el servicio cumple con los objetivos
iniciales del trabajo, permitiendo crear un sistema de mensajería basado en editores y suscriptores
para la plataforma Android.

PALABRAS CLAVE: servicio, Android, Mosquito, MQTT

REVISTA ODIGOS
QUITO-ECUADOR
2022 11

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

Introduction
With the notoriety of cell phones, individuals are progressively subject to their cell phones to
receive continuous messages, so texting is especially significant (Zhang et al., 2007). As of now,
we can sidestep the transporters, through a standard TCP/IP organization to send messages
straightforwardly to the cell phone (Peiji & Yanai, 2001).

It’s obviously true that over the most recent couple of years, cell phones have altered the
entire world, and a piece of this significant world pattern has involved changing the manner
in which individuals speak with each other; one of the components of this current has been
texting administration. The push message administrations were executed different convention
structures like XMPP, CoAP, and MQTT. These different conventions are utilized for each unique
circumstance, specifically the MQTT convention was intended to chip away at low-power gadgets
pleasantly as a lightweight convention and has been utilized in numerous IoT gadgets and texting
frameworks (Hwang et al., 2016).

MQTT protocol become our best option due for its undeniable potential benefits. It is an open,
basic, lightweight, and simple to-carry out informing convention. At first, it was intended to
associate huge quantities of far-off sensors and control gadgets (Silva et al., 2017). The convention
has been applied in an assortment of inserted frameworks. Clinics utilize this convention to speak
with pacemakers and other clinical gear providers. Oil and gas organizations use it to screen oil
pipelines large number of miles away (Shaoyue et al., 2012).

A portable application that utilizes MQTT sends and gets messages by calling a MQTT library.
Messages are traded through a MQTT informing server. The MQTT customer and server handle the
intricacies of conveying messages dependably to the versatile application and monitor the cost of
organization the board.

MQTT applications run on cell phones, for example, cell phones and tablets. MQTT is likewise
utilized in telemetry to get information from sensors and to control them from a distance. For cell
phones and sensors, MQTT offers a profoundly adaptable distribution/membership convention with
secure conveyance.

A few review papers are tending to various attributes of distribute/buy in based frameworks, like
plan, execution, quality necessities, directing calculations, and so forth In “Nature of Administration
in Wide-Scale Distribute Buy in Frameworks”, the creators research the cutting edge modern
and scholarly distribute/buy in arrangements zeroing in on adaptability and quality prerequisites,
while in “The Many Essences of Distribute/Buy in”, the creators present order dependent on
correspondence, different distribute/buy in plans, plan, and executions, yet as far as we could
possibly know, there is no overview which recognizes key-necessities for IoT distribute/buy in
arrangements.

The following research is also carried out in this important area, such as:

A. Design and implementation of a reliable message transmission system based on

REVISTA ODIGOS
QUITO-ECUADOR
202212

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

MQTT protocol in IoT

This paper planned and executed a dependable message transmission framework utilizing MQTT
convention to keep up with requesting between messages for the workplace. This (framework)
comprises of MQTT convention, solid message transmission server, and customer module (Hwang
et al., 2016).

B. Design and implementation of push notification system based on the MQTT protocol

This paper depicted a technique for pushing warning framework dependent on the MQTT
convention. It tends to be utilized to tackle the issue of moment pushing different messages from
the server to the versatile customer (Tang et al., 2013).

C. System of acquisition, transmission, storage and visualization of pulse oximeter and

ECG data using android and MQTT

The creators present an arrangement of wellbeing information assortment, transmission, and
capacity intended for electrocardiography (ECG) and Heartbeat Oximetry results, the objective is
to address this test by making a framework for gaining and communicating information through
Bluetooth to an Android versatile stage, which sends it to a distant server, where the information
is put away in a data set and opens up for perception. This empowers any far off client to get to
imperative information on a patient without being actually present (Barata et al., 20139.

D. Correlation analysis of MQTT loss and delay according to QoS level

This examination breaks down the MQTT message transmission process which comprises of
truly wired/remote distribute customer, specialist server, and buy in customer. By communicating
messages through 3 degrees of QoS with different sizes of payloads, we have caught parcels to
examine start to finish deferrals and message misfortune (Lee et al., 2013).

All these papers are of great help as a base for the realization of this project, because they allow
understanding the benefits that can be obtained when using mosquito MQTT and its linkage with
other technologies that would greatly benefit people, this can be evidenced by the investigations
carried out in this important area.

The purpose of this research is to perform an android service to interface Mosquitto Message
Broker (MQTT), offering a suitable mechanism to receive requests from Android applications and
also to notify that some data has arrived.

Methodology
In this chapter, we propose a method for sending and receiving messages, this is done through
an android service, which allows you to create the topic, make subscriptions, perform publication,

REVISTA ODIGOS
QUITO-ECUADOR
2022 13

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

display all messages. For the experiment, we used Linux-based Debian 8 for the server and an
open-source project Mosquitto MQTT for Broker server software.

It is very important to keep the guarantee of sending messages reliably, the service developed
in Android through the mobile application communicates with other IoT devices messages must
have atomicity, consistency, and performance (Schiper & Raynal, 1996). In addition, the mobile
application for reliable message transmission should be able to view the previous messages for
reliable message transmission or communication history.

The definition of all components of both software and hardware the existing relationships between
them are the most relevant aspects at the time of execution of a project. Next, all the architecture
adjacent to this project will be described and specified.

2.1 MQTT service architecture

The service is within the mobile application, the service uses MQTT libraries to perform the
functions of: Connect, Disconnect Publish, subscribe, QoS. By executing a .sh file the messages
are stored in an SQLite database (see Figure 1).

Figure 1.

Service Architecture

The central node that goes about as a server or representative, equipped for working up to
500000 messages. It is the merchant definitively the component responsible for dealing with the
organization and sending the messages. Correspondence dependent on themes, the customer
distributes the message, makes and the hubs that wish to get it should prefer it. The intermediary
server associates with a SQLite information base utilizing a clump cycle to store the messages
coming from the Distributers, MQTT customers preferred a point.

REVISTA ODIGOS
QUITO-ECUADOR
202214

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

2.2 Architecture of MQTT message transmission between multiple clients

Customers under remote organization climate were tried under Android climate. The remote climate
can be viewed as reasonable, since the correspondence from portable climate goes through 3G
organization and arrives at specialist waiter (see Figure 2).

Figure 2.

The general architecture of MQTT message transmission between multiple clients

It investigates message misfortune and start to finish delay by gathering bundles among
customer and server during the 5 minutes’ estimation. With regards to start to finish delay, we
use timestamps shaped as bundles move from the membership server to distribute the customer
through the representative server. The retransmission demand bundles were counted when of five
minutes to gauge message misfortune.

2.3 Implementation

In the first place, performed standard tests to comprehend the MQTT standards with online test
agents (test.mosquitto.org, broker.mqttdashboard.com) and the order line: preferring points and
distributing messages in those subjects. From that point onward, research was done to assess
what was at that point made with respect to Java.

MQTT customers to characterize a beginning stage. We ran over various programming like Java
customer Application Programming Points of interaction (APIs) and dealers, which are recorded in
Table 1.

REVISTA ODIGOS
QUITO-ECUADOR
2022 15

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

Table 1.

Implementation features

Brokers License Java Client APIS
Active MQ Open-source Eclipse Paho - a Java client

developed by the Eclipse
Foundation (Iyer et al., 2018)

Hive MQ Commercial MQTT-client - a Fuse source
Java MQTT client with a variety
of API styles (Manh Pham et al.,
2019)

IBM WebSphere Message
broker

Commercial IBM WebSphere MQ Telemetry
provides a Java client API
(Katsikeas et al., 2017)

Mosquito Open Source Free

2.3.1 Local Server MQTT

First import the repository package signing key:

•	 wget http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
•	 sudo apt-key add mosquitto-repo.gpg.key

Then make the repository available to apt:

•	 cd /etc/apt/sources.list.d/

Then one of the following, depending on which version of Debian

•	 sudo wget http://repo.mosquitto.org/debian/mosquitto-wheezy.listsudo
•	 wget http://repo.mosquitto.org/debian/mosquitto-jessie.list

Update and install mosquitto

•	 apt-get update 2. apt-get install mosquitto

Run mosquito and see the status

•	 Mosquitto –c /etc/mosquitto/mosquitto.conf 2. Service mosquitto status

Create service on android studio, see Figure 3.

http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
http://repo.mosquitto.org/debian/mosquitto-wheezy.listsudo
http://repo.mosquitto.org/debian/mosquitto-jessie.list

REVISTA ODIGOS
QUITO-ECUADOR
202216

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

Figure 3.

Service on Android Studio

2.3.2 Message storage SQLite

Before configuring the MQTT server you need a requirement to have installed an Ubuntu or Debian
server, with a non-root, sudo-enabled user and basic firewall.

Installing SQLite (Nemetz et al., 2018)

•	 sudo apt-get update;
•	 sudo apt-get install sqlite3 libsqlite3-de

Create a database, if you are still in the sqlite3 program, exit with. Quit in the SQLite flag, then run
the command:

•	 sqlite3 $HOME/MESSAGE.DB

Creating tables corresponding to each QoS (see Figure 4).

•	 sqlite3 $HOME/MESSAGE.DB “CREATE TABLE messagesQOS0(id_message INT
,message VARCHAR(200), topic VARCHAR(50),date text);”;

•	 sqlite3 $HOME/MESSAGE.DB “CREATE TABLE messagesQOS1(id_message INT
,message VARCHAR(200), topic VARCHAR(50),date text);”;

REVISTA ODIGOS
QUITO-ECUADOR
2022 17

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

•	 sqlite3 $HOME/MESSAGE.DB “CREATE TABLE messagesQOS2(id_message INT
,message VARCHAR(200), topic VARCHAR(50),date text);”;

Figure 4.

Message database

Results
3.1 Functional testing

Functional testing is a quality confirmation (QA) process and a kind of discovery testing that puts
together its experiments with respect to the details of the product part under test. Capacities are
tried by taking care of them input and inspecting the result, and inward program structure is seldom
thought of (dissimilar to white-box testing). Table 2, portrays exhaustively the particular of the tests
that are performed for usefulness

Table 2.

REVISTA ODIGOS
QUITO-ECUADOR
202218

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

Usefulness test

Case Event
number

Test Result

1. Connecting
the Client to the
MQTT Server

1 The client specifies the IP address
of the host message broker and the
port number assigned by MQTT to
verify the status of the connection.

The connection to
the MQTT server is
successful.

2 Display the successful connection
message to the server

The displayed
message indicates
that the connection is
successful.

2. Subscription
to a topic and
QoS

1 In the Android app, the subscription
parameter and the quality parameter
are sent, to press the “Subscribe”

Successful subscription
to a topic

2 Display message indicating
subscription to the topic

The message indicates
successful subscription

3. Message
publishing and
QoS

1 Enter the channel where the user
has subscribed, write any message
and press the “Publish” button, verify
that the published message has
been sent to the server.

The MQTT server
displays the received
message

2 From the server send a reply
message indicating that the message
has been successfully published

The message indicates
that data has been
successfully published

4. Storing sent
messages in a
database

1 All messages sent in each QoS from
different clients will be stored

Qo0 and Qo1 May
have lost messages
Qo2 This level has no
loss in sent messages

1.	 Connecting the client to the MQTT Server. The connection to the server from the
application through the service was satisfactory (see Figure 5).

Figure 5.

REVISTA ODIGOS
QUITO-ECUADOR
2022 19

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

Connecting the Client to the MQTT Server

2.	 Subscription to a topic and QoS. - The subscription to a topic was satisfactory, this is sow
in Figure 6.

Figure 6.

Subscription Interface to the topic

REVISTA ODIGOS
QUITO-ECUADOR
202220

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

3.	 Message publishing and QoS. Messages publishing on a topic was satisfactory, see Figure
7.

Figure 7.

Publication of an MQTT message

4.	 Storing sent messages in a database. - The user submits, the message is automatically
stored in a SQLite Database, this is possible when the .sh program is running. As shown in
Figure 8.

Figure 8.

Storage of messages sent through the MQTT Service

Conclusions

REVISTA ODIGOS
QUITO-ECUADOR
2022 21

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

Can be assured that MQTT is the protocol has used to provide new and revolutionary performance,
it opens new areas for messaging use cases. As MQTT specializes in low-bandwidth, high-latency
environments, it is considered an ideal protocol for machine-to-machine (M2M) communication.

We specified the design of a pushing notification system and discussed details of key techniques
that make the system effective and easy to maintain. This message push system is based on
MQTT protocol and makes it possible to push messages to clients in real-time.

From the functionality tests, positive results were obtained, users connected and sent messages
correctly and quickly, this on a local server. While in the performance tests it was verified that in
QoS1 a message was lost and the reception of the messages with the levels QoS0 and QoS2 were
successful. This ensures that messages arrive correctly to users.

REVISTA ODIGOS
QUITO-ECUADOR
202222

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

References
Barata, D., Louzada, G., Carreiro, A., & Damasceno, A. (2013). System of acquisition, transmission, storage and

visualization of Pulse Oximeter and ECG data using Android and MQTT. Procedia Technology, 9, 1265-
1272.

Hwang, H. C., Park, J., & Shon, J. G. (2016). Design and implementation of a reliable message transmission
system based on MQTT protocol in IoT. Wireless Personal Communications, 91(4), 1765-1777.

Iyer, S., Bansod, G. v., Praveen Naidu, V., & Garg, S. (2018). Implementation and Evaluation of Lightweight
Ciphers in MQTT Environment. 3rd International Conference on Electrical, Electronics, Communication,
Computer Technologies, and Optimization Techniques, ICEECCOT 2018, 276–281. https://doi.org/10.1109/
ICEECCOT43722.2018.9001599

Katsikeas, S., Fysarakis, K., Miaoudakis, A., Van Bemten, A., Askoxylakis, I., Papaefstathiou, I., & Plemenos,
A. (2017). Lightweight & secure industrial IoT communications via the MQ telemetry transport protocol.
In 2017 IEEE Symposium on Computers and Communications (ISCC) (pp. 1193-1200).

https://doi.org/10.1109/ISCC.2017.8024687

Lee, S., Kim, H., Hong, D. K., & Ju, H. (2013). Correlation analysis of MQTT loss and delay according to QoS
level. In The International Conference on Information Networking 2013 (ICOIN) (pp. 714-717).

Manh Pham, L., Nguyen, T.-T., & Tran, M.-D. (2019). A Benchmarking Tool for Elastic MQTT Brokers in IoT
Applications. International Journal of Information and Communication Sciences, 4(4), 59. https://doi.or-
g/10.11648/J.IJICS.20190404.11

Nemetz, S., Schmitt, S., & Freiling, F. (2018). A standardized corpus for SQLite database forensics. Digital Inves-
tigation, 24, S121–S130. https://doi.org/10.1016/J.DIIN.2018.01.015

Peiji, L, & Yanai, W. (2001). The Application of Push Technology in Mobile Internet Communications World, 31,
pp. 31 - 32.

Schiper, A., & Raynal, M. (1996). From group communication to transactions in distributed systems. Communi-
cations of the ACM, 39(4), 84-87. https://dl.acm.org/doi/abs/10.1145/227210.227230

Shaoyue, H., Xiaodong, X., & Zuyuan, M. (2012). The Application of Active Push Technology in Mobile Collabo-
ration Education [J]. Modern Education Technology, 4, 100-103.

Silva, C., Toasa, R., Martinez, H. D., Veloz, J., & Gallardo, C. (2017). Secure push notification service based on
MQTT protocol for mobile platforms. In XII Jornadas Iberoamericanas de Ingeniería de Software e Ingenie-
ría del Conocimiento y Congreso Ecuatoriano en Ingeniería de Software (pp. 69-84).

https://doi.org/10.1109/ICEECCOT43722.2018.9001599
https://doi.org/10.1109/ICEECCOT43722.2018.9001599
https://doi.org/10.1109/ISCC.2017.8024687
https://doi.org/10.11648/J.IJICS.20190404.11
https://doi.org/10.11648/J.IJICS.20190404.11
https://doi.org/10.1016/J.DIIN.2018.01.015
https://dl.acm.org/doi/abs/10.1145/227210.227230

REVISTA ODIGOS
QUITO-ECUADOR
2022 23

rodigos@uisrael.edu.ecANDROID SERVICE TO INTERFACE MOSQUITTO MESSAGING BROKER (MQTT)

Tang, K., Wang, Y., Liu, H., Sheng, Y., Wang, X., & Wei, Z. (2013). Design and implementation of push notifica-
tion system based on the MQTT protocol. In International Conference on Information Science and Compu-
ter Applications (ISCA 2013) (pp. 116-119). Atlantis Press.

Zhang, W. M., Zhang, M., Bi, J., & Qin, Z. (2007). Instant messaging: The present and the future. MINIMICRO SYS-
TEMS-SHENYANG-, 28(7), 1162-1168. https://en.cnki.com.cn/Article_en/CJFDTotal-XXWX200707001.
htm

https://en.cnki.com.cn/Article_en/CJFDTotal-XXWX200707001.htm
https://en.cnki.com.cn/Article_en/CJFDTotal-XXWX200707001.htm

REVISTA ODIGOS
QUITO-ECUADOR
202224

REVISTA ODIGOS • VOL.3 NUM. 1 • FEBRERO - MAYO 2022

Copyright (c) 2022 Cristian Mauricio Gallardo Paredes, Patricia del Rocío Rodríguez Fiallos y Francisco
Javier Galora Silva

Este texto está protegido bajo una licencia internacional Creative Commons 4.0.

Usted es libre para Compartir—copiar y redistribuir el material en cualquier medio o formato — y Adaptar
el documento — remezclar, transformar y crear a partir del material—para cualquier propósito, incluso para

fines comerciales, siempre que cumpla las condiciones de Atribución. Usted debe dar crédito a la obra
original de manera adecuada, proporcionar un enlace a la licencia, e indicar si se han realizado cambios.

Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que tiene el apoyo del
licenciante o lo recibe por el uso que hace de la obra.

Resumen de licencia – Texto completo de la licencia

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/deed.es
https://creativecommons.org/licenses/by/4.0/legalcode

	_GoBack
	Android service to interface mosquitto messaging broker (MQTT)
	Cristian Mauricio Gallardo Paredes1
	Patricia del Rocío Rodríguez Fiallos2
	Francisco Javier Galora Silva3

