EVALUACIÓN DE LA LIXIVIACIÓN DE MERCURIO EN RESIDUOS SÓLIDOS PELIGROSOS GENERADOS EN INDUSTRIAS DE CLORO-SOSA

Autores/as

  • Yailen Busto Yera Universidad Tecnológica Israel

DOI:

https://doi.org/10.35290/rcui.v2n1.2015.30

Resumen

A través del proceso de producción convencional de cloro-álcali, se producen elevadas cantidades de lodos residuales contaminados con mercurio (Hg). La inapropiada manipulación y disposición de estos lodos puede causar un peligro ambiental. El comportamiento de lixiviación del Hg presente en estos lodos mercuriales, procedentes de una planta de cloro-álcali que todavía está en funcionamiento, se investigó mediante la prueba alemán DIN 38414-S4. El contenido de mercurio total de las muestras se mostró por encima de 1500 mg/kg, permitiendo clasificar el material como residuo peligroso y de alto mercurio.

Las concentraciones de Hg en los lixiviados para ambas muestras fueron superiores a 0,02 mg/1, valor establecido por la Directiva de la Comunidad Económica Europea (CEE) en 1991 sobre disposición final en vertederos, como límite máximo de mercurio para su disposición en vertederos. Las altas concentraciones de la muestra 2 sugirieron la presencia de especies más solubles de mercurio, tales como el HgC12. Los resultados indican que el método utilizado para estabilizar el lodo en dicha industria, no ha sido suficientemente eficaz, y justifican la precaución sobre los sitios de disposición existentes, así como la gestión futura de estos residuos mercuriales altamente peligrosos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yailen Busto Yera, Universidad Tecnológica Israel

Profesora - investigadora

Citas

/1/EC, D. (2008). Directiva 2008/1/EC of the European Parliament and the Council of 15 January 2008 concerning integrated pollution prevention and control. Retrieved from http://europa.eu/legislation_summaries/environment/waste_management/128045en.htm.

-S4, D. (1984). Schlamm und Sedimente, Bestimmung der Eluierbarkeit mit Wasser. DIN Deutches Institut Für Normung. Berlín.

/689/EEC, D. (1991). Directiva of the European Parliament and the Council of 12 December 1991 concermng on hazardous waste. Retrieved from http://eurlex.europa. eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0689:EN :HTML.

Barnett M. O., T. R. (2001). Oxidative disolution of metacinnabar (β-HgS) by dissolved oxygen. Applied Geochemistry, 1499-1512.

Bayar S., D. l. (2009). Modelling leaching behaviour of solidified wastes using back propagation neural networks. Ecotoxicology and Environmental Safety, 843-850.

Belzile N., L. N. (1989). Heavy metal extractability in long term sewage sludge amenes soils. Environmental Science and Tecnology, 1015-1020.

Biester H., M. G. ( 2002) : Estimating distribution and retention of mercury in three different soils contaminated by emissions fromchlor-alkali plants: part l. Science of the Total Environment, 177-189.

Bollen A ., W. A . (2008) . Mercury speciation in HgC12-contaminated soils and ground water-Implications for risk assessment and chemical strategies. Water Research , 91-100.

Brandon N. P., F. P. (2001). Thermodyna mics and electrochemical behavior of Hg-S-Cl-H20 systems. Journal of Electroanalyti cal Chemistry, 18-32.

C., B . (2004). Muestreo de suelos. Criterios básicos. Revista Patagonia Forestal, 9-12.

Cottenie A. , V. M. (1982). Chemical analysis of plant and soil. Brussel: IWONL.

E., A. L. (1998). Diatomite. U .S. Geologi cal Survey Mineral Commodity Summaries, 56-57.

E., N . R . (1982). Carbonate and gypsum. In R. M. A.L. Page, Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Chemical and Microbiological Properties (pp. 181-197). Madison: WI: E Publishing Inc.

Ecology, W. S. (2003). An assessment of laboratory leaching tests for predicting the impacts of fill material on ground water and Surface water quality. Retrieved from: http//:www.ecy.wa.gov/programs/tcp/cleanup.html.

Fytianos K., C. E. (1998). Leaching ofw heavy metals from municipal sewage sludge. Environment International, 467-475.

G., T. F. (1993). Leaching behavior and fractionation of selected metals remediation as affected by thermal treatment of polluted sediments. International Journal of Environmental Analytical Chemistry, 167-175.

Gonzalez-Fernandez O., M. E. (2009).Multielemental analysis of dried residue from metal-bearing waters by wave length dispersive X-ray ftuorescence spectrometry. Spectrochimica Acta B, 184-190.

H., K. P. A. (1984). Trace elements in soils and plants. New York, US: CRC Press, Inc.

Holley E. A., M. A. (2007). Mercury mobi lization by oxidative dissolution of cinnabar (a-HgS) and metacinnabar (-HgS). Chemical Geology, 313-325.

I., M. J. (1998). Chemical partitioning of heavy metals in soil rock at historical lead smelter site. Water, Air and Soil Pollution, 391-409.

Jay J. A., M. F. (2000). Mercury speciation in the presence of polysulfides. Environmen tal Science and Technology, 2196-2200.

K., M. S. (2009). Hidden Costs: Reduced IQ from Chlor-Alkali Plant Mercury Emissions Harms the Economy. Retrieved from: http://na.oceana.org/en/news-media/publications/reports/hidencosts-reduced-iq-from-chlor-alkali-plantmercury-emissions-harms-the-economy.

Kazi T. G., J. M. (2005). Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test. Analytical and Bioanalytical Chemistry.

Kylefors K., A. L. (2003). A comparison of small-scale, pilot-scale and large-scale tests for predicting leaching bahaviour of landfilled wastes. Waste Management, 45-59.

Landis M. S., K. G.-W. (2004). Divalent in organic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmospheric Environment.

Liu G., C. J. (2006). Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Science of the Total Environment, 384-392.

M., U. A. (1990). Methods of analysis for heavy metals in soils. In B. J. Alloway, Heavy Metals in Soils. (pp. 40 -73). Glasgow: Blackie and Son.

Mukherjee A. B., Z. R. (2004). Mercury in waste in the European Union: sources, disposal methods and risks. Resources, Conserva tion and Recycling, 155-182.

N ., B. J. (1991). Impact ofheavy metals on low land rivers and implications for the man and the environment. Science of the Total Environment, 207-258.

N., M. L. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environmental Quality, 259-264.

Pacyna E. G., P. J.-J. (2006). Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science ofthe Total Environment, 147-156.

PNUMA. (2009). Global Estimate of Global Mercury Cell Chlorine Capacity. Retrieved from www.unep.org: http://www.unep.org/hazardoussubstances/Mercury/PrioritiesforAction/ChloralkaliSector/Reports/tabid/4495/language/enUS/Default.aspx.

Quevauviller P. H., V. d. (1996). Conclusions of the workshop: harmonization of leaching/extraction tests for environmental risk assessment. Science of the Total Environment, 133-139.

R., C. V. (2008). The use of leaching tests to study the potential mobilization of heavy metals from soils and sediments : A comparison. Water, Air and Soil Pollution, 95-11.

R., P. K . (1997). Inorganic Speciation of mercury in sulfidic waters : the importance of zero-valent sulfur. Environmental Science and Technology, 2148-2153.

Reis A. T., M. S. (2009). Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Science of the Total Environment , 2689-2700.

Rhoades J., K. A. (1992). The use of saline waters for crop production - FAO irrigation and drainage. Rome , Italy.

S., R. D (1996). Recommended methods for determinig soil cation exchange capacityty. In A. W. J.T. Sims, Recommended soil tes ting procedures for the North-eastern United States (pp. 62-69). United States: Delaware: E-Publishing Inc.

Southworth G. R., L. S. (2004). Fugitive mercury emissions from a chlor-alkali factory: sources and fluxes to the atmosphere. Atmospheric Environment, 597-611.

Svensson M., D. A. (2006). Formation of cinnabar-estimation of favourable conditions in a proposed Swedish repository. Journal of Hazardous Materials, 830-836.

Ulrich S., l. M. (2007). Mercury contami nation in the vicinity of a derelict chlor-alkali plant. Part 1: sediment and water contamination of Lake Balkyldak and the River Irtysh. Science of the Total Environment, 1-16.

USEPA. (2008). Land Disposal Restrictions Regulations for Mercury-Containing Non wastewaters. R 40 CFR Part 273 Retrieved from http://www.epa.gov/epawaste/hazard/tsd/mercury/treatmnt.htm.

Van Ranst E., V. M. (1999). Manual for the Soil Chemistry and Fertility Laboratory. Ghent, Belgium: Ghent University, Faculty for Agricultural and Applied Biological Sciences.

Viguri J., A. A . (2000). Characterization of metal finishing sludge : influence of the pH. Journal of Hazardous Materials, 63-75. “Se-influence of the pH. Journal of Hazardous Materials, 63-75.

Descargas

Publicado

2015-04-10

Cómo citar

Busto Yera, Y. (2015). EVALUACIÓN DE LA LIXIVIACIÓN DE MERCURIO EN RESIDUOS SÓLIDOS PELIGROSOS GENERADOS EN INDUSTRIAS DE CLORO-SOSA. Revista Científica UISRAEL, 2(1), 61–78. https://doi.org/10.35290/rcui.v2n1.2015.30

Número

Sección

Artículos

Artículos más leídos del mismo autor/a