Wind potential assessment and wind speed prediction with Data Mining

Authors

DOI:

https://doi.org/10.35290/ro.v1n3.2020.368

Keywords:

data mining, energy, generation, prediction, speed, wind

Abstract

The flow of the wind has been affected by factors such as roughness and topography of the terrain, which produce disturbances in its movement. The presence of hills can generate, on the one hand, an increase in wind speed until reaching the top, but in turn, in the lower part it increases turbulence producing recirculation effects. This behavior does not allow to know in detail the development of the velocity profiles and the turbulent kinetic energy of the wind. In this sense, due to the great interest in the study of air flow in complex terrains, the present project consists of the evaluation of the wind resource in complex lands, specifically in a natural wind tunnel located between the snow-covered Chimborazo and Carihuairazo of Ecuador, and the prediction of the wind speed for a new time horizon.

Downloads

Download data is not yet available.

References

Ali, M. E., Hassan, M. Z., Ali, M. S., & Kumar, J. (2017). Prediction of Wind Speed Using Real Data: An Analysis of Statistical Machine Learning Techniques . Asia-Pasific World Congr. Comput. Sci. Eng. (APWC CSE), 259-264.

Bayram, K., Murat, D., Tahir, G. M., & Ziyaddim, R. (2018). ESTIMATING WIND ENERGY POTENTIAL WITH PREDICTING BURR LSM PARAMETERS: A DIFFERENT APPROACH. Journal of Engineering & Natural Sciences , 389-404.

Bektas, Z., Kücükdeniz , T., & Özcan, T. (2017). A Comparison of Support Vector Regression and Multivariable Grey Model for Short-Term Wind Speed Forecasting. Turkish Journal of Forecasting,, 46-53.

Borovsky, J. E. (2019). Compacting the description of a time-dependent multivariable system and its multivariable driver by reducing the state vectors to aggregate scalars: the Earth's solar-wind-driven magnetosphere. . Nonlinear Processes in Geophysics, 429-443.

Chen, C., & Pang, Y. (2019). Exploring Machine Learning Techniques for Smart Drainage System. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 63-70.

Chen, J., Zeng, G.-Q., Zhou, W., Du, W., & Lu, K.-D. (2018). Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Energy Conversion and Management, 681-695.

Cortes - Pérez, D. M., Sierra-Vargas, F. E., & Arango - Gómez, J. E. (2016). Evaluación, predicción y modelación del potencial eólico Assessment forescasting and modelling of wind Potencial. Ingeniería Mecánica, 167-175.

Feng , C., Cui, M., Hodge, B.-M., & Zhang, J. (2017). A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Applied Energy, 1245-1257.

Fischer, A., Montuelle, M., Mougeot, M., & Picard, D. (2017). Statistical learning for wind power: A modelling and stability study towards forecasting. Wind Energy, 20(12), 2037-2047.

Goh, H. H., Lee, S. W., Chua, Q. S., Goh, K. C., & Teo, K. K. (2016). Wind energy assessment considering wind speed correlation in Malaysia. Renewable and Sustainable Energy Reviews, 1389-1400.

Lawan, S. M., Abidin, W. A., Lawan, A. M., Bichi, S. L., & Abba, I. (2017). The potential of topographical feedforward neural network (T-FFNN) technique in monthly wind speed and direction prediction. Informatics Sustain Soc. Through Digit Innov. ICEEI, 1-6.

Medina, N., & Juan, R. (3 de Diciembre de 2012). Predicción con incertidumbre en meterolog{ia energética. Aplicación en predicción eólica. Gran Canaria: ULPGC Universidad las Palmas de Gran Canaria. https://accedacris.ulpgc.es/bitstream/10553/9120/6/tfm_rnebot.pdf

Mercado, F. R., García Fernández, W., & Acebey, J. H. (2016). Sistema de inteligencia artificial para la predicción temprana de heladas meteorológicas. Artifitial intelligence system for early prediction of weather frost, 483-495.

Narayana, M. S. (2017). Adaptive linear prediction for optimal control of wind turbines. Renewable Energy , 895-906.

Optis, M., & Perr-Sauer, J. (2019). The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production. Renewable and Sustainable Energy Reviews, 27-41.

Palomares Losada, A. M. (2002). Caracterización del régimen de vientos y desarrollo de un modelo de predicción eólica a escala local en el estrecho de Gibraltar. Madrid: Universidad Complutense de Madrid.

Parreño, J., & Gomez , A. (2004). Pronostico de la velocidad y dirección del Viento mediante Redes Neuronales Artificiales. Congreso de Ingenieria de Organización Leganés, 905-914.

Pascual, Á., Subias, Á., Martín, M. L., Valero, F., García , A., Sebastian, L. I., . . . Morata, A. (2010). Predicción de Velocidad Media y Rachas Máximas diarias de viento en la península Ibérica mediante metodología de análogos. Asociación Española de Climatología, 571-580.

Piazzi, G. T. (2017). Snow multivariable data assimilation for hydrological predictions in Alpine sites. In EGU General Assembly Conference Abstracts, 7777.

Prieto Emhart, M. (2018). Exploring Machine Learning Models for Wind Speed Prediction. Catalunya: Universitat Politecnica de Catalunya.

Sierra-Vargas, F. E., & Arango-Gómez, J. E. (2016). Assessment, Forecasting and modeling of wind potential. Wind Energy, 1-10.

Sun, Y. D. (2017). Optimal day-ahead wind-thermal unit commitment considering statistical and predicted features of wind speeds. . Energy Conversion and Management, 347-356.

Torrijos Moreno, J. (2019). Predicción de energía eólica con modelos autorregresivos (Bachelor's thesis).

Published

2020-10-10

How to Cite

Vargas Guevara, C. L. . (2020). Wind potential assessment and wind speed prediction with Data Mining. ODIGOS JOURNAL, 1(3), 9–25. https://doi.org/10.35290/ro.v1n3.2020.368

Issue

Section

Articles

Most read articles by the same author(s)