Review of studies on adapted artificial intelligence in education
DOI:
https://doi.org/10.35290/ro.v5n2.2024.1250Keywords:
Intelligent educational technologies, Recomendation systems for education, Intelligent learning platforms, Machine larningAbstract
The use of artificial intelligence (AI) aimed at education shows rapid advancement and growing adoption at various educational levels. The applications of AI in this context range from virtual assistants and personalized learning platforms to data analysis allowing us to understand student performance. There is heightened interest in leveraging this technology to incorporate adaptive learning for students, offering personalized training experiences. The objective of this study is accomplishing bibliographic research on related studies on the integration of artificial intelligence adapted to education through the SLR (Systematic Literature Review) methodology, where significant questions are developed through the inclusion and exclusion criteria. The diversity of technologies used is addressed, from online platforms to collaborative tools, both the positive impact and the associated challenges are analyzed, including the digital divide and the adaptations required by educators.
Downloads
References
Abbas, A., Yasin, A., y Hosseini, S. (2024). A global perspective of government initiatives to support higher education during the COVID-19 pandemic : A systematic review of literature. Research in Globalization, 8. https://doi.org/10.1016/j.resglo.2024.100202 DOI: https://doi.org/10.1016/j.resglo.2024.100202
Almache, J. y Márquez, J. (2023). Implicaciones éticas de la IA y su potencial impacto en el derecho internacional. Revista San Gregorio, 1(54), 209–231. https://doi.org/10.36097/rsan.v0i54.2203 DOI: https://doi.org/10.36097/rsan.v1i54.2458
Castro, J., Wong, R., Adesope, O., y Paas, F. (2021). Effectiveness of Multimedia Pedagogical Agents Predicted by Diverse Theories: a Meta-Analysis. Educational Psychology Review, 33, 989–1015. https://doi.org/10.1007/s10648-020-09587-1 DOI: https://doi.org/10.1007/s10648-020-09587-1
Cornejo, I., y Cippitani, R. (2023). Ethical and Legal Considerations of Artificial Intelligence in Higher Education: Challenges and Prospects. Revista de Educacion y Derecho, (28). https://doi.org/10.1344/REYD2023.28.43935 DOI: https://doi.org/10.1344/REYD2023.28.43935
Crovi, D. (2023). Comunicación educativa en pospandemia: Factores que interpelan a la formación digital universitaria. InMediaciones de la comunicación, 19(1), 1688-8626. https://dialnet.unirioja.es/servlet/articulo?codigo=9277369 DOI: https://doi.org/10.18861/ic.2024.19.1.3703
Delgado, N., Campos, L., Sainz, M., y Etxabe, J. (2024). Aplicación de la Inteligencia Artificial ( IA ) en Educación : los beneficios y limitaciones de la IA percibidos por el profesorado de educación primaria , educación secundaria y educación superior. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(1). https://doi.org/10.6018/reifop.577211 DOI: https://doi.org/10.6018/reifop.577211
Dian, A., Santoso, H., Junus, K., y Suhartanto, H. (2023). The Effect of the Integration of Metacognitive and Motivation Scaffolding Through a Pedagogical Agent on Self- and Co-Regulation Learning. IEEE Transactions on Learning Technologies, 16(4), 573–584. https://doi.org/10.1109/TLT.2023.3266439 DOI: https://doi.org/10.1109/TLT.2023.3266439
Díez, F., Villa, A., López, A., y Iraurgi, I. (2020). Impact of quality management systems in the performance of educational centers: educational policies and management processes. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03824 DOI: https://doi.org/10.1016/j.heliyon.2020.e03824
Divanji, R., Bindman, S., Tung, A., Chen, K., Castaneda, L., y Scanlon, M. (2023). A one stop shop? Perspectives on the value of adaptive learning technologies in K-12 education. Computers and Education Open, 5. https://doi.org/10.1016/j.caeo.2023.100157 DOI: https://doi.org/10.1016/j.caeo.2023.100157
Flores, J., y García, F. (2023). Reflexiones sobre la ética, potencialidadesy retos de la Inteligencia Artificial en el marcode la Educación de Calidad (ODS4). Comunicar, 31(74), 35–44. https://doi.org/10.3916/C74-2023-03 DOI: https://doi.org/10.3916/C74-2023-03
Habib, S., Vogelb, T., Anli, X., y Thorne, E. (2024). How does generative artificial intelligence impact student creativity? Journal of Creativity, 34(1). https://doi.org/10.1016/j.yjoc.2023.100072 DOI: https://doi.org/10.1016/j.yjoc.2023.100072
Hünicken, L., González, A., Haag, M., Villafañe, y Ruppel, D. (2021). Gamificación y Aprendizaje Adaptativo en la enseñanza de la asignatura Algoritmos y Estructuras de Datos. Electronic Journal of SADIO, 20 (2), 98–114. http://sedici.unlp.edu.ar/handle/10915/135599
Ingavélez, P., Robles, V., Pérez, A., Hilera, J., y Oton, S. (2022). Automatic Adaptation of Open Educational Resources: An Approach From a Multilevel Methodology Based on Students’ Preferences, Educational Special Needs, Artificial Intelligence and Accessibility Metadata. IEEE Access, 10, 9703–9716. https://doi.org/10.1109/ACCESS.2021.3139537 DOI: https://doi.org/10.1109/ACCESS.2021.3139537
Joshi, S., Rambola, R., y Churi, P. (2021). Evaluating artificial intelligence in education for next generation. Journal of Physics: Conference Series, 1714. https://doi.org/10.1088/1742-6596/1714/1/012039 DOI: https://doi.org/10.1088/1742-6596/1714/1/012039
Kabudi, T., Pappas, I., y Olsen, D. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100017 DOI: https://doi.org/10.1016/j.caeai.2021.100017
Kumar, A., Krishnamurthi, R., Bhatia, S., Kaushik, K., Ahuja, N., Nayyar, A., y Masud, M. (2021). Blended Learning Tools and Practices: A Comprehensive Analysis. IEEE Access, 9, 85151–85197. https://doi.org/10.1109/ACCESS.2021.3085844 DOI: https://doi.org/10.1109/ACCESS.2021.3085844
Liang, J., Hare, R., Chang, T., Xu, F., Tang, Y., Wang, F., Peng, S., y Lei, M. (2022). Student Modeling and Analysis in Adaptive Instructional Systems. IEEE Access, 10, 59359–59372. https://doi.org/10.1109/ACCESS.2022.3178744 DOI: https://doi.org/10.1109/ACCESS.2022.3178744
Lorenzo, N., Gallon, R., Palau, R., y Mogas, J. (2021). New Objectives for Smart Classrooms from Industry 4.0. Technology, Knowledge and Learning, 26, 719–731. https://doi.org/10.1007/s10758-021-09527-0 DOI: https://doi.org/10.1007/s10758-021-09527-0
Ly, B., Ly, R., y Hor, S. (2023). Zoom classrooms and adoption behavior among Cambodian students. Computers in Human Behavior Reports, 9. https://doi.org/10.1016/j.chbr.2022.100266 DOI: https://doi.org/10.1016/j.chbr.2022.100266
Macpherson, T., Churchland, A., Sejnowski, T., DiCarlo, J., Kamitani, Y., Takahashi, H., y Hikida, T. (2021). Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks, 144, 603–613. https://doi.org/10.1016/j.neunet.2021.09.018 DOI: https://doi.org/10.1016/j.neunet.2021.09.018
Martínez, M., Rigueira, X., Larrañaga, A., Martínez, J., Ocarranza, I., y Kreibel, D. (2023). Impact of artificial intelligence on assessment methods in primary and secondary education: Systematic literature review. Revista de Psicodidáctica, 28(2), 93–103. https://doi.org/10.1016/j.psicoe.2023.06.002 DOI: https://doi.org/10.1016/j.psicoe.2023.06.002
Mills, N. (2021). ALEKS constructs as predictors of high school mathematics achievement for struggling students. Heliyon, 7(6). https://doi.org/10.1016/j.heliyon.2021.e07345 DOI: https://doi.org/10.1016/j.heliyon.2021.e07345
Minn, S. (2022). AI-assisted knowledge assessment techniques for adaptive learning environments. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100050 DOI: https://doi.org/10.1016/j.caeai.2022.100050
Mollo, J., Lázaro, R., y Crespo, R. (2023). Implementación de Nuevas Tecnologías de Información y Comunicación para la Educación Superior: Revisión sistemática. Revista Ciencia & Sociedad, 3(1), 16–30. https://www.cienciaysociedaduatf.com/index.php/ciesocieuatf/article/view/58
Pérez, R., Balderas, A., Muñoz, A., Cabrera, J., Palomo, M., y Dodero, J. (2023). ChatbotSQL: Conversational agent to support relational database query language learning. SoftwareX, 22. https://doi.org/10.1016/j.softx.2023.101346 DOI: https://doi.org/10.1016/j.softx.2023.101346
Quintanar, R., y Hernández, M. (2022). Modelos Tecnológicos de Aprendizaje Adaptativo Aplicados a la Educación. Revista Tecnológica-Educativa Docentes 2.0, 15(1), 41–66. https://doi.org/10.37843/rted.v15i1.308 DOI: https://doi.org/10.37843/rted.v15i1.308
Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., y Koole, M. (2021). Balancing Technology, Pedagogy and the New Normal: Post-pandemic Challenges for Higher Education. Postdigital Science and Education, 3, 715–742. https://doi.org/10.1007/s42438-021-00249-1 DOI: https://doi.org/10.1007/s42438-021-00249-1
Salcedo, D., Rosas, J., y Vicario, C. (2021). El Futuro de la Inteligencia Artificial en educación en América Latina [hoja informativa]. Boletín Upiita. http://www.boletin.upiita.ipn.mx/index.php/ciencia/946-cyt-numero-85/1950-el-futuro-de-la-inteligencia-artificial-en-la-deteccion-de-enfermedades
Sanabria, J., Silveira, Y., Pérez, D., y Cortina, J. (2023). Incidences of artificial intelligence in contemporary education. Comunicar, 31(77). https://doi.org/10.3916/C77-2023-08 DOI: https://doi.org/10.3916/C77-2023-08
Sanda, L. y Klimova, B. (2021). Educational mobile applications for learning English as a second language by Czech seniors. Procedia Computer Science, 192, 1848–1855. https://doi.org/10.1016/j.procs.2021.08.190 DOI: https://doi.org/10.1016/j.procs.2021.08.190
Skulmowski, A. (2023). The Cognitive Architecture of Digital Externalization. Educational Psychology Review, 35, 1–21. https://doi.org/10.1007/s10648-023-09818-1 DOI: https://doi.org/10.1007/s10648-023-09818-1
Stolpe, K., y Hallström, J. (2024). Artificial intelligence literacy for technology education. Computer and Education Open, 6. https://doi.org/10.1016/j.caeo.2024.100159 DOI: https://doi.org/10.1016/j.caeo.2024.100159
Terrones A. y Rocha, M. (2024). El valor de la ética aplicada en los estudios de ingeniería en un horizonte de inteligencia artificial. Sophia, (37). https://doi.org/https://doi.org/10.17163/soph.n36.2024.07 DOI: https://doi.org/10.17163/soph.n36.2024.07
VanderLinde, G. y Mera, T. (2023). El uso de inteligencia artificial y sus desafíos para la evaluación académica: una revisión de la literatura. Cuaderno de Pedagogía Universitaria, 21(41), 126-137. DOI: https://doi.org/10.29197/cpu.v21i41.564
Wu, X., Duan, R., y Ni, J. (2023). Unveiling security, privacy, and ethical concerns of ChatGPT. Journal of Information and Intelligence, 2(2), 102-115. https://doi.org/10.1016/j.jiixd.2023.10.007 DOI: https://doi.org/10.1016/j.jiixd.2023.10.007
Wu, B. y Zhou, Y. (2020). The Impact of MOOC Instructor Group Diversity on Review Volume and Rating - Coursera Specialization as an Example. IEEE Access, 8, 111974–111986. https://doi.org/10.1109/ACCESS.2020.3000787 DOI: https://doi.org/10.1109/ACCESS.2020.3000787
Yenduri, G., Kaluri, R., Rajput, D., Lakshmanna, K., Gadekallu, T., Mahmud, M., y Brown, D.(2023). From Assistive Technologies to Metaverse - Technologies in Inclusive Higher Education for Students with Specific Learning Difficulties: A Review. IEEE Access, 11, 64907–64927. https://doi.org/10.1109/ACCESS.2023.3289496 DOI: https://doi.org/10.1109/ACCESS.2023.3289496
Zafari, M., Bazargani, J., Sadeghi, A., y Choi, S. (2022). Artificial Intelligence Applications in K-12 Education: A Systematic Literature Review. IEEE Access, 10, 61905–61921. https://doi.org/10.1109/ACCESS.2022.3179356 DOI: https://doi.org/10.1109/ACCESS.2022.3179356
Zhan, Z., He, L., Tong, Y., Liang, X., Guo, S., y Lan, X. (2022). The effectiveness of gamification in programming education: Evidence from a meta-analysis. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100096 DOI: https://doi.org/10.1016/j.caeai.2022.100096
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Miguel Angel Pico Quijije
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores que participen de los procesos de evaluación y publicación de sus ediciones conservan sus derechos de autor, cediendo a la revista el derecho a la primera publicación, tal como establecen las condiciones de reconocimiento en la licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY), donde los autores autorizan el libre acceso a sus obras, permitiendo que los lectores copien, distribuyan y transmitan por diversos medios, garantizando una amplia difusión del conocimiento científico publicado.
- Toda derivación, a partir de esta obra, deberá citar la fuente y a la primera publicación en esta revista. Se permiten derechos comerciales no lucrativos sobre sus contenidos.
- Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista, es decir, podrán incluirlo en un repositorio institucional o publicarlo en un libro, siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores compartir su trabajo en línea, con la finalidad de intercambios productivos para una mayor y más rápida citación del trabajo como lo establece los efectos del movimiento ‘Acceso Abierto’.
- No puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros de hacer cualquier cosa que permita la licencia: https://creativecommons.org/licenses/by/4.0/deed.es
- La Revista ODIGOS es financiada completamente de los aportes realizados por nuestra entidad editora: Universidad Tecnológica Israel; por tal motivo, no establece cargos o cobros de ninguna índole a sus autores y colaboradores, así como tampoco genera pagos o remuneraciones de ningún tipo a ellos.
- Se asignará un Digital Object Identifier (DOI) a cada publicación.