Tecnología de Internet de las Cosas en el monitoreo de cultivos agrícolas

Autores/as

DOI:

https://doi.org/10.35290/ro.v4n3.2023.939

Palabras clave:

procesamiento de datos, productos agrícolas, sistema agrario, vigilancia

Resumen

El Internet de las Cosas (IoT) desempeña un papel importante en la agricultura porque proporciona beneficios para el desarrollo de cultivos y mejora de producción. Como existen diversos artículos que muestran su utilidad, la finalidad de este trabajo es analizarlos sistemáticamente para extraer datos sobre sistemas IoT enfocados en monitorizar cultivos agrícolas. Como parte del protocolo de revisión se plantearon cuatro preguntas direccionadas a conocer más sobre la manera en que se realiza el monitoreo, los componentes empleados, las funcionalidades y los datos recolectados. Utilizando cuatro de las bases de datos populares del área, se seleccionaron 41 artículos. De la extracción de datos se pudo conocer la utilización de dispositivos IoT con cierta preferencia hacia las aplicaciones móviles y una tendencia a emplear componentes como: ESP8266, YL-69, DTH-1 y Arduino. Además, entre las funcionalidades identificadas están el monitoreo del suelo, del crecimiento y rendimiento del cultivo, de la invasión de animales, el riego automático, entre otras. Por último, se encontraron varias decenas de tipos de datos que recolectan los dispositivos como parámetros ambientales y características del suelo. Todos estos datos ayudan en la caracterización de los sistemas IoT de interés y pueden servir de base para desarrollar otros.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbassi, Y., & Benlahmer, H. (2021). The Internet of Things at the service of tomorrow’s agriculture. Procedia Computer Science, 191, 475–480. https://doi.org/10.1016/J.PROCS.2021.07.060 DOI: https://doi.org/10.1016/j.procs.2021.07.060

Al-Atwan, N., & Nitulescu, M. (2020). Design and Test an Intelligent Irrigation System for Small Surfaces. 2nd International Conference on Electrical, Communication and Computer Engineering, ICECCE 2020. https://doi.org/10.1109/ICECCE49384.2020.9179269 DOI: https://doi.org/10.1109/ICECCE49384.2020.9179269

Anitha, A., Sampath, N., & Jerlin, M. (2020). Smart Irrigation system using Internet of Things. International Conference on Emerging Trends in Information Technology and Engineering, Ic-ETITE 2020. https://doi.org/10.1109/IC-ETITE47903.2020.271 DOI: https://doi.org/10.1109/ic-ETITE47903.2020.271

Audrey, D., Stanley, Tabaraka, K., Lazaro, A., & Budiharto, W. (2021). Monitoring Mung Bean’s Growth using Arduino. Procedia Computer Science, 179, 352–360. https://doi.org/10.1016/J.PROCS.2021.01.016 DOI: https://doi.org/10.1016/j.procs.2021.01.016

Baldovino, R., Valenzuela, I., & Dadios, E. (2019). Implementation of a low-power wireless sensor network for smart farm applications. 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2018. https://doi.org/10.1109/HNICEM.2018.8666262 DOI: https://doi.org/10.1109/HNICEM.2018.8666262

Bazán-Vera, W., Bermeo-Almeida, O., Samaniego-Cobo, T., Alarcón-Salvatierra, A., Rodríguez-Méndez, A., & Bazán-Vera, V. (2017). “The current state and effects of agromatic: a systematic literature review”. In Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (Eds.). Technologies and Innovation. CITI 2017. Communications in Computer and Information Science, 749, (pp. 269–281). Springer. https://doi.org/10.1007/978-3-319-67283-0_20 DOI: https://doi.org/10.1007/978-3-319-67283-0_20

Borah, S., Kumar, R., & Mukherjee, S. (2020). Study of RTPPS algorithm in UWB communication medium for a surveillance system to protect agricultural crops from wild animals. Proceedings - 2020 6th IEEE International Symposium on Smart Electronic Systems, ISES 2020, 121–126. https://doi.org/10.1109/ISES50453.2020.00036 DOI: https://doi.org/10.1109/iSES50453.2020.00036

Chandra, R., & Collis, S. (2021). Digital agriculture for small-scale producers. Communications of the ACM, 64(12), 75–84. https://doi.org/10.1145/3454008 DOI: https://doi.org/10.1145/3454008

Dahiya, S., Gulati, T., & Gupta, D. (2022). Performance analysis of deep learning architectures for plant leaves disease detection. Measurement: Sensors, 24. https://doi.org/10.1016/J.MEASEN.2022.100581 DOI: https://doi.org/10.1016/j.measen.2022.100581

Deivakani, M., Singh, C., Bhadane, J., Ramachandran, G., & Sanjeev Kumar, N. (2021). ANN Algorithm based Smart Agriculture Cultivation for Helping the Farmers. Proceedings - 2nd International Conference on Smart Electronics and Communication, ICOSEC 2021. https://doi.org/10.1109/ICOSEC51865.2021.9591713 DOI: https://doi.org/10.1109/ICOSEC51865.2021.9591713

Dholu, M., & Ghodinde, K. A. (2018). Internet of Things (IoT) for Precision Agriculture Application. Proceedings of the 2nd International Conference on Trends in Electronics and Informatics, ICOEI 2018, 339–342. https://doi.org/10.1109/ICOEI.2018.8553720. DOI: https://doi.org/10.1109/ICOEI.2018.8553720

Dos Santos, U., Pessin, G., da Costa, C., & da Rosa Righi, R. (2019). AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops. Computers and Electronics in Agriculture, 161, 202–213. https://doi.org/10.1016/J.COMPAG.2018.10.010. DOI: https://doi.org/10.1016/j.compag.2018.10.010

Dragulinescu, A., Balaceanu, C., Osiac, F., Roscaneanu, R., Chedea, V., Suciu, G., Paun, M., & Bucuci, S. (2021). IoT-based Smart Water Management Systems. 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging, SIITME 2021 - Conference Proceedings, 51–56. https://doi.org/10.1109/SIITME53254.2021.9663611 DOI: https://doi.org/10.1109/SIITME53254.2021.9663611

El Mezouari, A., El Fazziki, A., & Sadgal, M. (2022). Smart Irrigation System. IFAC-PapersOnLine, 55(10), 3298–3303. https://doi.org/10.1016/J.IFACOL.2022.10.125 DOI: https://doi.org/10.1016/j.ifacol.2022.10.125

Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. (2019). A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access, 7, 156237–156271. https://doi.org/10.1109/ACCESS.2019.2949703 DOI: https://doi.org/10.1109/ACCESS.2019.2949703

Farooq, M. S., Riaz, S., Abid, A., Umer, T., & Zikria, Y. (2020). Role of iot technology in agriculture: A systematic literature review. Electronics2020, 9(2). https://doi.org/10.3390/electronics9020319 DOI: https://doi.org/10.3390/electronics9020319

Gamal, Y., Gadallah, S., Osama, A., Soltan, A., & Madian, A. (2022). IOT-based air quality monitoring system for agriculture. 2022 - 4th Novel Intelligent and Leading Emerging Sciences Conference (Niles), 206–210. https://doi.org/10.1109/NILES56402.2022.9942441 DOI: https://doi.org/10.1109/NILES56402.2022.9942441

Gans, R., Ubacht, J., & Janssen, M. (2020). Self-sovereign Identities for Fighting the Impact of COVID-19 Pandemic. Digital Government: Research and Practice, 2(2), 1–4. https://doi.org/10.1145/3429629 DOI: https://doi.org/10.1145/3429629

Guerrero-Ulloa, G., Andrango-Catota, A., Abad-Alay, M., Hornos, M., & Rodríguez-Domínguez, C. (2023a). Development and Assessment of an Indoor Air Quality Control IoT-Based System. Electronics2023, 12(3), 608. https://doi.org/10.3390/electronics12030608 DOI: https://doi.org/10.3390/electronics12030608

Guerrero-Ulloa, G., Méndez-García, A., Torres-Lindao, V., Zamora-Mecías, V., Rodríguez-Domínguez, C., & Hornos, M. (2023b). Internet of Things (IoT)-based indoor plant care system. Journal of Ambient Intelligence and Smart Environments, 15(1), 47–62. https://doi.org/10.3233/AIS-220483 DOI: https://doi.org/10.3233/AIS-220483

Guerrero-Ulloa, G., Rodríguez-Domínguez, C., & Hornos, M. (2023c). Agile Methodologies Applied to the Development of Internet of Things (IoT)-Based Systems: A Review. Sensors2023, 23(2). 790. https://doi.org/10.3390/s23020790 DOI: https://doi.org/10.3390/s23020790

Gupta, A., & Nahar, P. (2023). Classification and yield prediction in smart agriculture system using IoT. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10235–10244. https://doi.org/10.1007/s12652-021-03685-w DOI: https://doi.org/10.1007/s12652-021-03685-w

Hernández-Morales, C., Luna-Rivera, J., & Pérez-Jiménez, R. (2022). Design and deployment of a practical IoT-based monitoring system for protected cultivations. Computer Communications, 186, 51–64. https://doi.org/10.1016/J.COMCOM.2022.01.009 DOI: https://doi.org/10.1016/j.comcom.2022.01.009

Hyunjin, C., & Sainan, H. (2021). A study on the design and operation method of plant factory using artificial intelligence. Nanotechnology for Environmental Engineering, 6(3), 1–5. https://link.springer.com/article/10.1007/s41204-021-00136-x DOI: https://doi.org/10.1007/s41204-021-00136-x

Kelebekler, E. (2021). Monitoring and recording system of laboratory environmental conditions as ISO/IEC 17025 requirement. 2021 International Conference on INnovations in Intelligent SysTems and Application ( INISTA). https://doi.org/10.1109/INISTA52262.2021.9548498 DOI: https://doi.org/10.1109/INISTA52262.2021.9548498

Khan, P., & Karna, L. (2021). Green House System Design Using IOT. Proceedings of the 5th International Conference on Electronics, Communication and Aerospace Technology ( ICECA), 522–526. https://doi.org/10.1109/ICECA52323.2021.9676064 DOI: https://doi.org/10.1109/ICECA52323.2021.9676064

Lekbangpong, N., Muangprathub, J., Srisawat, T., & Wanichsombat, A. (2019). Precise Automation and Analysis of Environmental Factor Effecting on Growth of St. John’s Wort. IEEE Access, 7, 112848–112858. https://doi.org/10.1109/ACCESS.2019.2934743 DOI: https://doi.org/10.1109/ACCESS.2019.2934743

Lova Raju, K., & Vijayaraghavan, V. (2022). A Self-Powered, Real-Time, NRF24L01 IoT-Based Cloud-Enabled Service for Smart Agriculture Decision-Making System. Wireless Personal Communications, 124(1), 207–236. http://dx.doi.org/10.21203/rs.3.rs-586227/v1 DOI: https://doi.org/10.1007/s11277-021-09462-4

Malhotra, A., Som, S., & Khatri, S. (2019). IOT Aided Techniques for Agriculture. 2019 4th International Conference on Information Systems and Computer Network (ISCON), 129–133. https://doi.org/10.1109/ISCON47742.2019.9036174 DOI: https://doi.org/10.1109/ISCON47742.2019.9036174

Mazo-Zuluaga, I. (2020). Identificación del volcamiento en un cultivo experimental de maíz, a partir de imágenes RGB adquiridas con una aeronave remotamente tripulada, en el departamento de caldas [Tesis de Maestría, Universidad Católica de Manizales]. https://repositorio.ucm.edu.co/handle/10839/3367

Mekala, M., & Viswanathan, P. (2019). CLAY-MIST: IoT-cloud enabled CMM index for smart agriculture monitoring system. Measurement, 134, 236–244. https://doi.org/10.1016/J.MEASUREMENT.2018.10.072 DOI: https://doi.org/10.1016/j.measurement.2018.10.072

Mekala, M., & Viswanathan, P. (2020). Sensor Stipulation with THAM Index for Smart Agriculture Decision-Making IoT System. Wireless Personal Communications, 111(8), 1909–1940. https://doi.org/10.1007/S11277-019-06964-0/METRICS DOI: https://doi.org/10.1007/s11277-019-06964-0

Mohammad EL-Basioni, B., Mohamed, E., Belal, A., Jalhoum, M., Abd EL-Kader, S., & Zahran, M. (2022). A case study of a real-time internet of things system for site-specific potato crop management in El-Salhia Area-Egypt. Scientific Reports, 12(1), 1–29. https://doi.org/10.1038/S41598-022-22690-3/FIGURES/29 DOI: https://doi.org/10.1038/s41598-022-22690-3

Mondal, A., & Dutta, P. (2022). Boltuino Platform Based Cognitive Irrigation System with Weather Adaptability for Efficient Water Use. International Conference on ICT for Smart Society (ICISS). https://doi.org/10.1109/ICISS55894.2022.9915196 DOI: https://doi.org/10.1109/ICISS55894.2022.9915196

Moreno, B., Muñoz, M., Cuellar, J., Domancic, S., & Villanueva, J. (2018). Revisiones Sistemáticas: definición y nociones básicas. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral, 11(3), 184–186. https://doi.org/10.4067/s0719-01072018000300184 DOI: https://doi.org/10.4067/S0719-01072018000300184

Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., & Nillaor, P. (2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, 156, 467–474. https://doi.org/10.1016/J.COMPAG.2018.12.011 DOI: https://doi.org/10.1016/j.compag.2018.12.011

Oliveira-JR, A., Resende, C., Gonçalves João, Soares Filipe., & Moreira Waldir. (2020). IoT Sensing Platform for e-Agriculture in Africa. 2020 IST-Africa Conference (IST-Africa). https://ieeexplore.ieee.org/document/9144060

Panda, P., Kumar, C., Vivek, B., Balachandra, M., & Dargar, S. (2022). Implementation of a Wild Animal Intrusion Detection Model Based on Internet of Things. 2022 Second International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, 1256–1261. https://doi.org/10.1109/ICAIS53314.2022.9742948 DOI: https://doi.org/10.1109/ICAIS53314.2022.9742948

Pathak, A., Uddin, M., Jainal Abedin, M., Andersson, K., Mustafa, R., & Hossain, M. (2019). IoT based Smart System to Support Agricultural Parameters: A Case Study. Procedia Computer Science, 155, 648–653. https://doi.org/10.1016/J.PROCS.2019.08.092. DOI: https://doi.org/10.1016/j.procs.2019.08.092

Perales, Á., López-de-Teruel, P., Ruiz, A., García-Mateos, G., Bernabé García, G., & García, F. (2022). FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming. Cluster Computing, 25(1), 2163–2178. http://dx.doi.org/10.1007/s10586-021-03489-9. DOI: https://doi.org/10.1007/s10586-021-03489-9

Ponce, J., Erazo Moreta, O., & Vicuña Pino, A. (2021). Técnicas estadísticas aplicadas a la caracterización de cacao con enfoque agromática. Revista San Gregorio, 1(46). https://doi.org/10.36097/rsan.v1i46.1527.

Quezada-Sarmiento, P. A., (2017). Implementación de una solución web y móvil para la gestión vehicular basada en Arquitectura de Aspectos y metodologías ágiles: Un enfoque educativo de la teoría a la práctica. Risti. Revista Ibérica de Sistemas e Tecnologías de Informação, (25), 1–14. https://doi.org/10.17013/risti.25.98-111. DOI: https://doi.org/10.17013/risti.25.98-111

Rajkumar, M., Abinaya, S., & Kumar, V. (2017). Intelligent irrigation system - An IOT based approach. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). https://doi.org/10.1109/IGEHT.2017.8094057. DOI: https://doi.org/10.1109/IGEHT.2017.8094057

Roy, S., Sowmya, B., Seema, S., Rajeshwari, S., & Vinutha, M. (2019). Utility System for Elevating Pre and Post Production of Crops. 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). https://doi.org/10.1109/DISCOVER47552.2019.9008103 DOI: https://doi.org/10.1109/DISCOVER47552.2019.9008103

Sachan, R., Kaur, S., & Shukla, A. (2021). Smart Irrigation and Security System for Agricultural Crops and Trees. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). https://doi.org/10.1109/ICRITO51393.2021.9596246. DOI: https://doi.org/10.1109/ICRITO51393.2021.9596246

Sharma, A., Kumar, H., Mittal, K., Kauhsal, S., Kaushal, M., Gupta, D., & Narula, A. (2021). IoT and deep learning-inspired multi-model framework for monitoring Active Fire Locations in Agricultural Activities. Computers & Electrical Engineering, 93. https://doi.org/10.1016/J.COMPELECENG.2021.107216. DOI: https://doi.org/10.1016/j.compeleceng.2021.107216

Singh, P., & Sharma, A. (2022). An intelligent WSN-UAV-based IoT framework for precision agriculture application. Computers and Electrical Engineering, 100. https://doi.org/10.1016/J.COMPELECENG.2022.107912. DOI: https://doi.org/10.1016/j.compeleceng.2022.107912

Sinha, B., & Dhanalakshmi, R. (2022). Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems, 126, 169–184. https://doi.org/10.1016/j.future.2021.08.006 DOI: https://doi.org/10.1016/j.future.2021.08.006

Sushanth, G., & Sujatha, S. (2018). IOT Based Smart Agriculture System. 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). https://doi.org/10.1109/WISPNET.2018.8538702 DOI: https://doi.org/10.1109/WiSPNET.2018.8538702

Tephila, M., Sri, R., Abinaya, R., Lakshmi, J., & Divya, V. (2022). Automated Smart Irrigation System using IoT with Sensor Parameter. 2022 International Conference on Electronics and Renewable Systems (ICEARS), 543–549. https://doi.org/10.1109/ICEARS53579.2022.9751993 DOI: https://doi.org/10.1109/ICEARS53579.2022.9751993

Thirrunavukkarasu, R., Meeradevi, T., Ganesh Prabhu, S., Arunachalam, J., Manoj Kumar, P., & Prasath, R. (2021). Smart Irrigation and Crop Protection Using Arduino. 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, 639–643. https://doi.org/10.1109/ICACCS51430.2021.9441867. DOI: https://doi.org/10.1109/ICACCS51430.2021.9441867

Tiglao, N., Alipio, M., Balanay, J., Saldivar, E., & Tiston, J. (2020). Agrinex: A low-cost wireless mesh-based smart irrigation system. Measurement, 161. https://doi.org/10.1016/J.MEASUREMENT.2020.107874. DOI: https://doi.org/10.1016/j.measurement.2020.107874

Tovar, J., Solórzano, J. D. los S., Badillo, A., & Rodríguez Cainaba, G. (2019). Internet de las cosas aplicado a la agricultura: estado actual. Lámpsakos, (22), 86–105. https://doi.org/10.21501/21454086.3253 DOI: https://doi.org/10.21501/21454086.3253

Turner, M. (2010). Digital Libraries and Search Engines for Software Engineering Research: An Overview. January 2010, 1–11. http://ebse.webspace.durham.ac.uk/wp-content/uploads/sites/49/2022/08/SearchEngineIndex_v5.pdf.

Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007. DOI: https://doi.org/10.1016/j.biosystemseng.2017.09.007

Vásquez-Bermúdez, M., Hidalgo, J., Crespo-León, K., & Cadena-Iturralde, J. (2019). Citizen Science in Agriculture Through ICTs. A Systematic Review. In: Valencia-García, R., Alcaraz-Mármol, G., Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (Eds.). ICT for Agriculture and Environment. CITAMA2019 2019. Advances in Intelligent Systems and Computing, 901, (pp. 111–121). Springer. https://doi.org/10.1007/978-3-030-10728-4_12 DOI: https://doi.org/10.1007/978-3-030-10728-4_12

Venkatesh, J., Ramasamy, K., Aruna, M., Praveen, K., Sasikala, N., & Nasani, K. (2022). EAgri: Smart Agriculture Monitoring Scheme using Machine Learning Strategies. 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). https://doi.org/10.1109/ICSES55317.2022.9914216 DOI: https://doi.org/10.1109/ICSES55317.2022.9914216

Verdouw, C., Wolfert, S., & Tekinerdogan, B. (2016). Internet of things in agriculture. CABI Reviews, 11(35)., 1-12. https://doi.org/10.1079/PAVSNNR201611035. DOI: https://doi.org/10.1079/PAVSNNR201611035

Wu, J. (2022). Crop Growth Monitoring System Based on Agricultural Internet of Things Technology. Journal of Electrical and Computer Engineering, 2022, 1–10. https://doi.org/10.1155/2022/8466037 DOI: https://doi.org/10.1155/2022/8466037

Publicado

2023-10-10

Cómo citar

Abad Alay, M. C., Méndez García , M. A., & Erazo Moreta , O. (2023). Tecnología de Internet de las Cosas en el monitoreo de cultivos agrícolas. REVISTA ODIGOS, 4(3), 69–93. https://doi.org/10.35290/ro.v4n3.2023.939

Número

Sección

Artículos