Visualization of the Chaos Game for non-hyperbolic iterated function system

Authors

DOI:

https://doi.org/10.35290/ro.v1n2.2020.302

Keywords:

Chaos game, dynamic systems, iterated function system

Abstract

The chaos game is a random algorithm generally applied to contracting (hyperbolic) iterated function system (IFS) which makes it possible to obtain the unique attractor of the dynamic system. However, when applied to non-contractive IFS extremely interesting results can be obtained that are not only important from a theoretical and application point of view, but can also be part of a mathematical didactics that seeks to modernize teaching. In this sense, this research present some results related to the application of the chaos game to non-contracting IFS are presented.

Downloads

Download data is not yet available.

References

Barnsley, M. (1988). Barnsley Fractals Everywhere. Academic Press, INC.

Barnsley, M. (2004). Ergodic theory, fractal tops and colour stealing. 1, 1–17.

Barnsley, M. (2006). Super Fractals. Cambridge University Press.

Barnsley, M. F. (1995). Fractals Everywhere. Morgan Kaufmann.

Barnsley, M., & Vince, A. (2011). The chaos game on a general iterated function system. Ergodic Theory and Dynamical Systems, 31(4), 1073–1079. https://doi.org/10.1017/S0143385710000428

Devaney, R. L. (2018). Discrete Dynamical Systems: A Pathway for Students to Become Enchanted with Mathematics. In Teaching and Learning Discrete Mathematics Worldwide: Curriculum and Research (pp. 137–144). https://doi.org/10.1192/bjp.112.483.211-a

Díaz, L. J., & Matias, E. (2018). Non-hyperbolic Iterated Function Systems: semifractals and the chaos game. (August). http://arxiv.org/abs/1808.10283

Fabre, C. (2011). Chaos Game 2D/3D. http://demonstrations.wolfram.com/ChaosGame2D3D/

Garrison, D. (2016). The Chaos Game. https://la.mathworks.com/matlabcentral/fileexchange/55508-the-chaos-game

Gatica, S. N., & Ares, O. E. (2012). La importancia de la visualización en el aprendizaje de conceptos matemáticos. Edmetic, 1(2), 88–107. http://www.uco.es/revistas/index.php/edmetic/article/view/220

Huisman, S. (2017). The Chaos Game - Sierpinski triangles and beyond. https://community.wolfram.com/groups/-/m/t/1025180

La Torre, D., & Mendivil, F. (2013). A Chaos game algorithm for generalized iterated function systems. Applied Mathematics and Computation, 224, 238–249. https://doi.org/10.1016/j.amc.2013.08.049

Peitgen, H.-O., Jürgens, H., & Saupe, D. (2004). Chaos and Fractals. In Mathematica. https://doi.org/10.1016/B978-044450002-1/50063-1

Piretzidis, D. (2020). Chaos game simulator. https://la.mathworks.com/matlabcentral/fileexchange/44908-chaos-game-simulator

Wang-Hoyer, A. (2020). The Chaos Game. http://andrew.wang-hoyer.com/experiments/chaos-game

Published

2020-06-10

How to Cite

Mavares Ferrer, P. J. (2020). Visualization of the Chaos Game for non-hyperbolic iterated function system. ODIGOS JOURNAL, 1(2), 9–20. https://doi.org/10.35290/ro.v1n2.2020.302

Issue

Section

Articles